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Summary. Let (ai);o-i be a sequence of identically and independently dis­
tributed random vectors drawn from the d-dimensional unit ball Bd and let 
X n : = convbull( a 1, ... , an) be the random polytope generated by a 1 , ... • an. 
Furthermore, let L1( Xn) := Vol( ßd \ Xn) be the deviation of the polytope 's vol­
ume from the volume of the ball. For uniformly distributed a; and d :'.:'. 2, we 
prove that tbe limiting distribution of E~&"})) for n - oo satisfies a 0-1-law. 
Especially, we provide precise information about the asymptotic behaviour of 
the variance of L1~Xn ). We deliver analogous results for spherically symmetric 
distributions in B witb regularly varying tail. 

Keywords. Stochastic approximation, convex hull, variance, limiting distribu­
tion 

1. Introduction 

Let (a;)iEN be a sequence of independently and identically distributed random 
vectors drawn from the d-dimensional unit ball ßd, d ~ l, and Xn, n ~ d + l, 
be the polytope generated as convex hull of the vectors a1, ... , an. The main 
subject of the paper will be the behaviour of the deviation of volume L1(Xn), 
L1(Xn) := Vol(Bd \ Xn), for !argen. 

There is much known about the asymptotic behaviour of the expectation 
value of L1(Xn) in case of uniformly distributed a; . One of the first results on 
this topic is due to Renyi and Sulanke (11], who investigated the planary case 
d = 2. Their result was generalized to arbitrary dimensions by Wieacker (15], 
who obtained tbat 

( 1.1) 
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with a positive constant Cd depending on d. For an extensive survey upon related 
results about the expectation of polytope variables and upon the history of their 
development we refer to the articles of Buchta (3], Gruber [7], Schneider [12], 
Weiland Wieacker [13] and especia.lly to the work of Barany and Larman (1,2]. 

Little is known so far about higher moments of polytope variables in general. 
for d = 2 Groeneboom [6] analyzed the limiting distribution of the Xn 's vertex 
process, which was generalized by Hueter [8] to arbitrary dimens!ons. Using 
Efron 's identity Groeneboom 's results about the vertex process of Xn enable 
estimates for the variance of Ll(Xn) in case of d = 2 and uniforrnly distributed 
a; but not for d ~ 3 or more general distrihutions. 

In the present paper we are going to estimate the variance of Ll(Xn) asymp­
totically from above for uniformly distributed a1 in Bd, d ~ l. Furthermore, as 
an interesting consequence of the analysis of expectation and variance, we will 
show that the limiting distribution of EURl)) satisfies a 0-1-law for d ~ 2, 
which means Ll(Xn) = E(Ll(Xn))(l + o(l)) for n -+ oo a.lmost surely. The 
structure of the paper is the following. Section 2 contains the main results. In 
section 3 we provide additional notation and auxiliary lemmata necessary for the 
proofs in sections 4 and 5. Generalizations of the results in section 2 are added 
in section 6. We state analogous results for spherically symmetric distributions 
with regularly varying tail in the ball. All proofs of the paper are formulated 
in a manner, which allows a generalization to spherically symmetric distribu­
tions with regularly varying tail without much further work . The restriction to 
uniformly distributed a; in the main part of the paper has been done to make 
reading easier for non-specialists and in order to keep necessary technicalities at 
a mm1mum. 

2. Main results 

Our first result provides an asymptotic upper bound for the variance of Ll(Xn) 
in case of a uniforrnly distributed sample: 

Theorem 1: For uniformly distributed a; in Bd , d ~ 1: 

(2.1) 
~±~ 

Var(Ll(Xn)) = O(n-d-FT), n-+ oo . 

The order of the asymptotic bound in (2.1) cannot be improved in general, as 
it is an easy exercise to confirm for d = 1 that Var(Ll(Xn)) = B(n- 2), n-+ oo . 
lt is also possible to establish Var(Ll(Xn)) = B(n- 513 ), n-+ oo, for d = 2. We 
conjecture that (2.1) is sharp in order for d ~ 3 too, as it seems natural that 
the variance tends to zero more slowly in higher dimensions. But, this question 
remains still open. lt is no surprise that Var(Ll(Xn)) becomes small for large n, 
but it is an interesting observation that the quotient ~Y{1(::N tends to zero also 
as n tends to infinity for d ?: 2. In the light of Chebychev's inequality this means 
that even small relative deviations from the mean are very unlikely for large n. 
But even more is true . Denoting f(t) "'g(t) , t-+ t0 , for /(t) = g(t)(l + o(l)), 
t -+ to, we have: 

Theorem 2: For uniformly distributed a; in Bd, d ?: 2, almost everywhert 
holds: 
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(2 .2) 

In other words , the random variables l~~~f E(4J&""J)), limsup E(4J(~,'',,\) and l are 
n-oo 

equal up to sets of measure zero. This means the limiting distribution of E~tx':.\ ) 
satisfies a 0-1-law : lfwe coosider a special , randomly generated sequeoce (a;);eN 
we know that with probability ooe .1( Xn) has the asymptotic behaviour we 
expect if we average on all events (a;);EN· Ford~ 2: 

(2 .3) p ( r Ll(Xn) < ) { 0, s < l 
r n!..~ E(.1{Xn)) - s = 1, S ~ l 

Surprisingly, {2.3) is not true if d = l. Here, the limiting distribution is given by 

(2.4) Pr( lim .1(Xn) :::; s) = 1·- {l + 2s)exp(-2s) . 
n-oo E{.1{Xn )) 

3. Definitions and auxiliary lemmata 

As the random variable .1( X n) is not very handy for an asymptotic evaluation 
of moments , in most papers, which deal with the expectation of Ll(Xn ), the 
random variable Vol( Xn) is studied instead . For the analysis of variances we go 
another way and approximate Ll(Xn) by a related random variable , which has 
the same asymptotic behaviour. Let Xn :="convhull(Xn U {O}) and 

(3 .1) 

Theo, Ll(Xn) is equal to .1(Xn) if and only if 0 E int(Xn) · If 0 fi. int(Xn), we 
have tl-'d :::; .1(Xn) - Ll(Xn) :::; µd , where l-'d := Vol(ßd) . Thus, for any k EIN 
and any spherically symmetric distribution there exists a constant 1J E [tµd, µd), 
such that 

(3.2) 

The identity on the right hand side of (3.2), which is independent from the choice 
ofthe spherically symmetric distribution, is due to Schlaeßi and was rediscovered 
by Wendel (14] . Especially, (3 .2) means that the moments of ..1(Xn) and Ll(Xn) 
are equal up to terms of exponentially decreasing order in n. Hence, ifE(..1t(Xn)) 
does not decrease exponentially in n , E(.1t(Xn)) - E(..1t(Xn)), n-+ oo, and 
therefore, ifVar(Ll(Xn)) = O(n°) for an a E IR, we know Var(..1(Xn)) = O(n°) 
for n -+ oo. lt is the main advantage of investigating ..1 instead of .1 that ..1 can 
be additively represented in terms of functionals of Xn 's boundary simplices. 
Before we explain this fact, we introduce eome notation, which is basic for our 
considerations in the following sections. 

Let An := { a 1 , ... , an}, n ~ d + 1, be nondegenerate . We call a set An 
nondegenerate, if any An-subset of cardinality $ d is linearly independent and 
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any An-subset of cardioality < d + l is affinely independent. Geometrically, 
nondegeneracy of An means that cvery facet of Xn is a simplex . In case of 
spherically symmetric distributions with Pr(a = 0) = 0, An is nondegenerate 
with probability one. For any set l of indices 1, ... , n with cardinality d let 
Ar:= {a;li E !} , S1 := convhull(Ar) and Sr:= convhull(Sr U {0}) . H(.4.r) be 
the hyperplane supporting Sr and Hl 1 l( Ar) be the closed halfspace generated by 
H(Ar). which contains the origin. For any An-subset Ar with cardioality d and 
any An-subset B let x1(B, Ar) := x(B C H(ll(Ar)) be the indicator fuoctional 
deciding whether B belongs to H(ll(Ar). Especially, if B =An, \1(An ,Ar) 
indicates whether Sr is a boundary simplex of Xn or not . Fioaliy, for d 2: 1, K.d 

denote the surface _area of 5d- i. For nondegenerate sets An we have the following 
representation of Ll( X n) : 

(3.3) Ll(Xn) = L xdAn, Ar )h(Ar) with h(Ar) := Vol(( cone(Sr) \Sr) n Bd) . 
r 

In order to estimate the variance of Ll( X n) asymptotically we need a bound for 
h(Ar ), which is good if Sr lies near the boundary of ßd , as Xn exhausts the ball 
more and more if n becomes (arge with high probability. Let h( Ar) be H (Ar )'s 
distance from the origio. Theo : 

Lemma A: lf Ar is a linearly Independent set, 

(3.4) - I ~! I 
6(Ar) = 0((1- h r....,-) , h - 1- , 

unifonnly for all Ar with h(Ar) = h' . Moreover, h(AJ) is globally bounded by 
l 'iµd . 

Proof : By geometrical insight , we have in case of linearly independent Ar with 
h(Ar)=h' : 

- l - - l - h'd 
6(Ar) $ Vol(h1 Sr) -Vol(Sr) = dh'd-I Area(Sr) . 

As Sr is a simplex in ad - 1-dimensional ball with radius v'l - h'2 , a rough 
bound for its area is given by Area(S1 ) ~ µd-i(l - h'2 )(d-l)/ 2 . Therefore, we 
obtain 

- d-1 d:tl d <!±! 
6(Ar) $ r-rµd-1(1- h'f·rh'- +l = 0((1- h')-r), h' - 1- . 

The global bound is obvious by the definition of h(Ar ). 

Besides tbe geometrical quantities introduced above, we need some proba­
bilistic quantities. Let F(h') := Pr(llall 2 2: h') be tbe probability tbat a random 
point lies outside a spbere of radius h' centered at the origin. For uniformly in 
ßd distributed vectors, F is given by F(h') = 1- h'd . G(h') := Pr(a<1J ~ h') be 
the probability that a random point lies beyood a fixed byperplane at distance 
h' from tbe origin and g(h') be G(h')'s density function . Anotber quantity often 
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used in the following sections is the density function p(h') of h(.4 1 )'s distribu­
tion function P(h' ) := Pr(h(A t) ~ h' ). Raynaud [10] proved that for uniformly 
distributed a, : 

l 

(3.5 ) G(h') = -- ( 1 - t )-,-dt , p(h' ) = - _a_-+_ ( 1 - h'2 )---,- . 
µ d 1 J 2 d- 1 2 K 1? l d

2 
- 1 

µd dKd2+ 2 

"' 
For our asymptotic estimations we widPly do not need explicit representations 
of these quantities but some relations between them , which we summarize in the 
following lemma: 

Lemma B: In ca.!e of •niformly distnbuted a; m Bd there erzst positive con­
stanb ad, ßd and "Yd such that for d 2'. 2: 

(3 .6) 
I 1 d- 1 1 1 G(h) ""a" ( l - h )-,--F(h ) , h -+ 1- , 

(3.7) p(h')- ßdcd- 2(h')g(h')F(h') , h' - 1-

(3.8) p(h') ~ "'Yd g(h') , h' E [O , l] . 

Ford= l , we have p(h') = 2g(h') and P(h' ) = F(h') = 2G(h') for h E [O , l] . 

Lemma B is an easily established consequence of ( 3.5) and therefore we do not 
proof it . Mainly, we state the lemma because its claims remain valid , if we 
consider more general spherically symmetric distributions. For instance. if the 
underlying distribution has a regularly varying tail , cf. section 6 for a definition , 
(3.&-3.8) hold with constants depending additionally on F then. 

In order to evaluate the stochastic integrals representing the variance in 
section 4 we need an asymptotic formula, which is based on Watson's lemma: 

Lemma C: Let RE C(O , tJ fulfill R(t)"" Ltß fort - 0+ and constants L > 0 
and ß > -1. Then , for d 2'. l: 

1/2 

(3 .9) (~) j (1 - rt-"rd-i R(r)dr"" I'(dd~ ß) R(* ), n - oo . 

0 

Equation (3.9) is also valid if L will be replaced by an at zero slowly vary­
ing function , cf. section 6 for a precise definition . We will apply Lemma C to 
functions R of type R(r) := r"1 (1 - G(r))"2 , where u 1, u2 ~ 0 and Gis the 
inverse function of G. These functions fulfill the prepositions of Lemma C with 
ß = u1 + 0'2 d~I for uniformly distributed vectors in the ball, as is proven by in­
version of (3.6). The funtions R satisfy the prepositions also in the more general 
case of spherically symmetric distribution with regularly varying tail in the ball . 

Finally, we look at the distribution function P of an angle enclosed between 
two independently and spherically symmetrically distributed points in B" , d 2'. 2. 
P has a density function p, given by Lemma D. 

Lemma D: Let a 1 and a2 be independently distnbuted by a spherically sym­
metric distrib.tion in B" , d 2'. 2, and /et P(tp) = Pr(L(a1 , a2) $ tp) be the 
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distnbutzon Junct1on of th e angle enclosed by a 1 and a 2 . Then P has a den sity 
p. 91ven by 

(310) "d-l . d 0 
p(..;) = -- Sln - - p . 

l'i.d 

Proof : Without loss of generality let a 1 = e1 and a2 be uniformly distributed 
on the sphere 5d- i . In this case. we obviously have 

P(.p) = Pr(L(a 1 . a2)::; p) = Pr(a~ 1 ) 2'. cos.p) 

For the uniform distribution on the sphere 5d- 1 • Pr(a~ 1 J 2'. cos<p) equals the 
fraction of the area of the cap of sd- l cut off by the byperplane a(l ) = cos 'P· 
Tbus, 

.p 

P(<p) = "d-l J sind- 2 tjJdtjJ . 
Kd 

0 

Thus, (3.10) is immediate by taking derivatives . 

4. The variance--Proof of Theorem l · 

We consider the second moment of the polytope functional Ll . cf. ( 3 .1) . instead 
of .1's , which was motivated in section 3. By (3 .3) we know, that 

(4 .1) E(Ll 2(Xn )) = L E(Pr(S1 , S; bd . simpls. of Xn) b(AI)b(A; )). 
l ,J 

Let us first overestimate the probability that S1 and S; are jointly boundary 
simplices of Xn. If we introduce the probability function G 1, 1 ( A1 , A; ), 

(4.2) 

we obtain by use of the definition of XI , cf. section 3, 
(4.3) 

Pr(S1 , S./ bd. simpls. of Xn) = G1,1(A1 , A;)"- 2d+llnJlx 1(A;,AI}n(A1,A1), 

as all a; are identically and independently distributed . (4 .3) reduces the prob­
ability that S1 and Si are jointly boundary simplices of Xn to the probability 
G 1,1(A1, Ai) that a point a lies in both of the halfspaces H(ll(AI) and H(ll(Ai) 
respectively. Hence, inserting ( 4.3) into ( 4.1) we obtain 
( 4.4) 

E(Ll2(Xn )) = L E(G7.~ 2d+IInij(A1 , Ai h :1(A1 , Ai )x1 (Ai, A1) b(AI)b(Ai )) . 
l,J 

Next, we :;plit up the expectation on the right of ( 4.4) in two parts. We distin­
guish between those pairs of subsets A1 and Ai , whose associated hyperplanes 
H ( A1) and H (Ai) have common points inside the unit ball ßd , and those, 
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whose associated hyperplanes do not intersect inside the ball. Pairs ( A1 . A;), 
whose corresponding hyperplanes do not meet at all. form a set of measure zero. 
So . we do not care about them . Let r( A 1 . A; ). 

( 4 .. 1) r(.41 . A;) = n11n{ilall 2 I a E H(AJ) n H(.4; )} . 

be the distance from the origin to H ( AJ) n H ( A;). Then . r( A. 1 , A;) > l if H ( AJ) 
and H(A;) have no common points inside ßd and r(A 1. A;) $ l otherwise . We 
define e( n) , 
(4.6) ( ) '°" Gn-2d+llnJI - -e n := L...,E( 1 , 1 (A1.A;)\i(A1,A;h:1(A;,AI)6(AI)6(A;)y(r> 1)) 

l ,J 

and the complement e(n) of e(n) by 
(4 .7) -( ) '°" E(Gn-2d+j/nJj - - ) e n := L.... 1, 1 (A1 , A;)X1(A1,A;)xi(A; , AJ)6(AJ)6(A1)x(r $ 1) , 

l ,J 

where r = r(A1 , A1) in (4.6) and (4.7) . As obviously holds , 

( 4.8) 

Theorem l will be established by the proof of two claims, which estimate e( n) 
and e( n) from above. For uniformly distributed vectors a; in the unit ball Bd , 
d 2: l, holds: 

Claim 1: There exists a constant Cd such that for n 2: 2d: 

Claim 2: 

( 4.10) 
- a+J 4H 

e(n) = 0((1- G(~))-r) = B(n-a+T), n -oo. 

G denotes the inverse function of G, cf section 3. We notate (4.9) and (4.10) in 
terms of G also as the left hand sides of the claims remain valid for spherically 
symmetric distributions witb regularly varying tail, cf. section 6. The order of 
decadence of e(n) in line (4 .10) cannot be improved. This is unfortunately not 
necessarily true for the estimate in line (4 .9) , as e(n) - E2(Ll(Xn)) might be 
negative and could have the same order in modulus, whicb e(n) has. Thus, in 
o~der to determine the sharp order of decadence of Var(Ll(Xn)), we need a lower 
bound , whicb we cannot give for d 2: 3 so far. Furthermore, from (4 .9-4 .10) we 
learn , that E(Ll2(Xn)),..,,, e(n),..,,, E2 (..1(Xn)) for n .- oo. This means the second 
moment of Ll(Xn) is dominated by the contribution of those pairs of boundary 
simplices 51 and 51, wbose supporting byperplanes do not have common points 
inside ßd . 

The proofs of both claims in the following subsectioos are done without 
making use of the fact that we investigate uniformly distributed vectors . We 
only assume that the functions G, p and g satisfy (3 .6-3.8), that the functioos 
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of type R( r) = r"1( 1 - G( r) )"2 fulfill the prepositions of Lemma C and that 
E(Ll(Xn)) = 8(1- G(~)) for n-+ oo . 

~ . J Proof of Claim 1 

ff r (A1, A;) > 1, we know additionally that In J = 0. As there are (~)(";td) 
pairs of sets of indices (/ , J ), which do not intersect , we receive from definition 
(4.6) for any pair (/ , J) : 
(4 .1.1) 

e(n) = (~)(";td)Eo(G;1,1 2d(A1 , A1)Xt(A1 , A1)x1(A1 , AI)6(Ar)6(A1)x(r > 1)) 

with r = r( A1 , A;) . The index 0 indicates that I and J fulfill 1 I n J 1 = 0. The 
function G 1, 1 ( A1, A1) can be represented in terms of G , if jointly r( A1 , A;) > 1, 
AT C H (ll (A1) and A1 c H (ll (Ai) . 

H(A1) 

Fig.1. illustrationofG1 ,t(A1,A1) 

By geometrical insight, cf. Figure 1, we have under these conditions on A1 and 
A1 : 

( 4.1.2) G1 ,1(AT , A;) = 1 - G(h(A1 )) - G(h(A; )) . 

Thus, if we insert ( 4.1.2) into ( 4.1. l) and if we afterwards estimate the indicator 
functionals by one, we obtain an upper bound for e(n) . lt holds: 

(4.1.3) e(n) ~ (~)(";td) E0 ((1 - G(h(AI)) - G(h(A1 )))"- 2d6(AI)6(A1 )) . 

On the right band side of ( 4.1.3) , the variables h 1 = h(Ar) and h2 = h(A;) 
and the variables 6(A1) and 6(A1 ) are independent, as I and J are disjoint sets . 
Therefore, by Bayes' theorem the right band side of (4.1.3) is equal to 
( 4.1.4) 

1 1 - -
(~)(";jd) f f(l - G(hi) - G(h2))n-2dE(6(Ar)lh1)E(6(A1)lh2)dP(h1)dP(h2) 

0 0 
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with P(h') = Pr(h(Ar) ~ h') , cf. section 3. The condition ( · lh') is an abbrevia­
tion for the condition ( · lh(AK) = h'), K E {/ , J} . As P has a density function 
p, we a.re allowed to replace dP(hi) by p(hi)dhi in (4 .1.4) . For ease of notation 
we introduc" an auxiliary function ,1 by the equation 

(4.1.5) E(b(AK )jh)p(h) = A(h)g(h) 

and substitute G(hi) =Ti in (4 .1.4). We obta.in from (4 .1.3) : 

1/2 1/2 

(4 .1.6) e(n) S (~)(";;") J J (1 - T1 - r2)"-2dA(Ö(ri))A(Ö(r2))dr1dr2, 
0 0 

where Ö denotes the inverse function of G. 
lt is our next objective to compare e(n) with E2 (Ll(Xn)) . For that reason we 

derive a representation of E(Ll(Xn)) , which is similar to e(n)'s bound in (4.1.6) . 
By definition (3 .3) and the identical distribution of the vectors ai we have for 
any set of indices l : 

(4.1.7) E{Ll(Xn)) = (~)E(Pr(Sr bd. simpl. of Xn) b(Ar )) . 

The probability that S1 is a boundary simplex of Xn can be expressed in terms 
of G. We gain by the definition of Xi, cf. section 3: 

(4.1.8) Pr(Sr bd . simpl. of Xn) = Pr"-d(a E H(ll(Ar)) = (1- G(h(A1)))"-d . 

Thus, with the same arguments as above we receive 

( 4.1.9) 
1/2 

E(Ll(Xn)) = (~) J {1- rt-dA(Ö(r))dr. 
0 

We reduce the discussion of the difference e(n) - E2 (Ll(Xn)) to the analysis of 
a bilinear form . lf we define kernels K(n)( T1, r2), 

(4.1.10) 

for Ti E [O, tJ and functions Än , 

(4.1.11) 
(1- r)"-dA(G(r)) 

Än(r) := ---------
1/2 
J ( 1 - T')n-d A( Ö( T') )dr' 
0 

for TE [O, !J, we obta.in from (4.1.6) and (4.1.9), 

( 4.1.12) 
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TJ 

1/2 
' 1 
\ 1 

~ Q4 
·\ \. 

u • \ 

~ 

0 1/2 Tt 

• K<•»o K<•»o ~ K<•><o K<•»o 
r1 - ' "l - ~ r1 - ' "'l -

• K~;>~o , K~;>$o D K~;>$o . K~;>$o 
0 negative doma.in of K(•) 

Fig. 2.1. Monotonicity of K(n) Fig. 2.2. Partition of the domain of K(n) 

as (~)("~") ~ e) 2
. The only matter left is a careful estimation of the bilinear­

form on the right hand side of (4 .1.12), which we do for n ~ 4d. We dissect the 
domain of integration [O, ~]2 into four parts Q 1 , . .. , Q4 , cf. Figure 2.2. lt is not 
very hard to show that K(n l( ~d, ~d) < 0. Hence, by the monotonicity of K<" l, 
cf. Figure 2.1, we know K("l(r1,r2 ) < 0 for (r1 ,r2 ) E Q 4 . In the region Q2 we 
have 

( 4.1.13) 

arguing again with the monotonicity of K(n)_ The same estimate holds in Q3 , if 
we replace T1 by r2 on the right hand side of ( 4.1.13). Finally, we have to analyze 
K(n) in Q1. As K(n) has a local maximum in(~,~), cf. Figure 2.1, we obtain : 

(4.1.14) K<0 l(r1, r2) ~ max(K(n)(O, ~d), K(n)(~, ~)) ~ ~2d+2, (r1, r2) E Q1 . 

Summarizing the discussion of the kerne! function K(n), we receive from (4.1.12): 

(4.1.15) 
2 - 1/2 2 

e(n)- ~ (Ll(Xn)) < d2d+2 J rA (r)dr+ ~2d+2. 
E2(.d(Xn)) - n n 

0 

Let us look at the integral on the right hand side of (4.1.15). lnvoking the 
definition of An and formula (4 .1.9), we get : 

(4.1.16) 

1/2 
1/2 (~) J (1 - rr-drA(G(r))dr 

J TAn(r)dr = O E(~(Xn)) 
0 

By the aid of (3. 7) and A 's definition ( 4.1.5 ), we know for d ~ 2 that 
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(4 .l.17) 

Ford= l , A(h) = 2E(h(Al)lh) . By Lemma A, E(h(Al)lh) = 0((1 - h)~) for 
h-+ 1-. Therefore, by (3.6) and (4 .l.17) we get A(h) = 0((1-h)Gd(h)) . Thus, 
as p/ g is bounded , there exists a continous function R and a positive constant 
L such that 

( 4. l.18) A(G(r)) S rd-I R(r ), r E [O , ~], R(r) - Lr( l - G(r)) , r-+ 0 + . 

As R satisfies the prepositions of Lemma C, 

1/2 

(4 .1.19) (~) f (1 - rt-drA(G(r))dr = O(R(! )) = B(!(l - G(! ))), n--. oo. 
0 

As 

(4 .l.20) 

Hence, by (4.l.16) , 

(4 .l.21) 

E(Ll(Xn)) = 8(1- G(!)) , n-+ 00. 

1/2 

J r Än(r)dr = O(n- 1
) , n-+ oo . 

0 

The proof of Claim l is completed if we invoke ( 4. l.20) for the denominator on 
the left band side of ( 4. l.l 6). 

{2 Proof of Claim 2 

The purpose of the present subsection is an estimation of the sequence e( n) from 
above. We analyze the contribution of pairs of indices (J, J) with II n JI = k, 
k E { 0, ... , d}, seperately. U sing easy combinatorial arguments, we see that there 
are q1:, 

(4.2.l) 

pairs of sets of indices I and J, which both have cardinality d and which have 
exactly k elements in common. Hence, if we define 
(4.2.2) 

- -2d+I: - -e1:(n) := q1:E1:(G;',1 (A1 ,A1)n(A1 ,A1)X1(A1,A1)6(AI)6(A1)x(r ~ 1)) 

with r = r(Ar, A1) and where the index k indicates that II n JI = k , we get 
from (4 .7) : 

d 

(4.2.3) e(n) = Le1:(n) . 
l:=O 

In the sequel, we estimate e1:(n) from above. First , we give a bound for 
G1,1(A1,A1) in terms ofG. For all (A1 , A1), 
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( 4.2.4) G1,1(Ar, A1) $min{ 1 - G(h(Ar )) , 1 - G(h(A1 ))} , 

which is immediate by the definitions G and G 1.1 · We introduce the conditioned 
probability function Pt, 

(4.2.5) 

and the conditioned expectation 
(4.2 .6) 

lt(h1, h2) := Et(h(Ar )h(A1) x( r(Ar , A;) ~ 1) lh(Ar) = h1, h(A;) = h2), 

where in both formulae the index A: indicates that II n JI = A:. The condition 
( ·lh1,h2) abbreviates the joiot conditions h(Ar) = h1 and h(A;) = h2 on Ar 
and A;. lf we estimate the indicator functiona.ls x 1 (Ar, A1) and xi( A;, Ar) in 
( 4.2.2) by one, we receive by Bayes' theorem and ( 4.2.4) : 
(4.2.7) 

f"t(n) $ qt J (l -G(min{h1,h2})t-2dHlt(h1 , h2)d{Pt(h1,h2)} . 

O~h1,h2$) 

(4 .2.8) 

with p as in section 3. Thus, exploiting the symmetry of ( 4.2. 7) we obtain 

(4 .2.9) 

1 

e1;(n) ~ 2qt f (1- G(h1)t-2dHTt(ht)p(h1)dh1 , 

0 

where tbe auxiliary function n is defined by 

1 

(4.2.10) Tt(hi) := J lt(h1, h2)d{Pr1:(h(A;) ~ h2ih(Ar) = hi)}. 

111 

Hence, if we insert (4.2.11) into (4.2.10) we obtain an asymptotic bound for Tt: 
(4.2.12) 
Tt(h1) = O((l-ht)d+t)Prt(h(A1) ~ h1, r(A1,A1) $ ljh(Ar) = h1), h1-+ 1-. 

For A: -:f:. d the conditioned probability on the right band side of (4.2.12) can be 
estimated by U8e of geometrical obaervations, cf. Figure 3. lf h(A1) ~ h1 and 
h1 = h(Ar ), ea.ch vector a E A; \Ar must lie outside a ball of radius h1 centered 
at the origio. On the other band, as r(Ar, A1) $ 1, the angle encloeed between 
the normal vector w(Ar) of the byperplane H(Ar) and each vector a E A1 \Ar 
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', ,,. 

ßd, //~' 
,_.,....- __ , 

b := 3arccosh(AI) 

/ ." 
1' 
( \ 

H(A1) 
1 

\ ' ; / 
\ \ / / 
~ 

H(A;) 

Fig. 3. Maximal poeaible angle between w(Ar) and a vector a E A1 \Ar 

cannot exceed 3 arccos h1 . Thus, as w(A1) and each a E A; \A1 are stochastically 
independent, we get 

(4.2.13) 
. j t 

Prt(h(A;) 2: h1 , r(A1 , A;):::; llh(A!) = ht) S (F(hi)P(3arccoshi)) - , 

which is trivially valid in case of d = k also. From Lemma D one easily derives 
• d-1 

that P(3arccosht) = 0((1 - hi)-r) for h 1 --+ 1-. Thus, invoking (3 .6) we 
obtain from ( 4.2.13) and ( 4.2.12): 

(4.2.14) 

For simplicity of notation we introduce a function s„ by the equation 

(4.2 .15) 

Asp fulfills (3 .7) we obtain 

( 4.2 .16) 2d " 1 d-t-;! Si.(hi) = O(G - - (hi)(l - hi)-r), h1 - 1- . 

Hence, as p/g is bounded there exists a continous function Ri. and a positive 
constant L , such that 
(4.2.17) 

Si.(G(r)):::; r 2d-1:-lRi.(r) , r E [O, ~], Ri.(r) ...... L(l - G(r))~, r-+ 0 + . 

lf we substitute G(hi) = r in line ( 4.2.9) and use ( 4.2.15) and ( 4.2.17) , we receive 

(4.2.18) 

As Ri. satisfies the prepositions of Lemma C , we obtain the desired estimate of 
Claim 2. 
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5. The limiting distribution- Proof of Theorem 2 

lf we apply Chebychev 's inequality to the random variable d( X n) - E( d( X n)) , 
we obtain for n ~ d + l and o > 0 

(5 . l) Pr(id(Xn) - E(d(Xn ))j ~ oE(d(Xn ))) S o - 2 ~~~~~n"// . 

By ( l. l) and Theorem l , we know that for uniformly distributed ai : 

(5.2) ·- Var(d(Xn)) _ O -F+f _ 
Tin .- E2(d(Xn)) - (n ) , n oo . 

Hence, the subeequence 'lm1r, mt := (k +d)4
, is summable for d ~ 2. This means 

00 

(5 .3) L Pr(jd(Xmk) - E(d(Xmk ))j ~ oE(d(Xmk ))) < 00 

t=l 

for all o > 0. Thus, by the lemma of Borel-Cantelli , we receive almost surely for 
d > 2: 

(5 .4) 

In the sequel , we exploit the monotonicity of the sequence (d(Xn ))nEl>I in order 
to show (5.4) for the sequence itself. For every n ~ m 1 there exists an index k(n) 
such that mt( n) S n < mt( n )+ 1 . By the definition of mt , it is a simple matter to 
prove mt(n)......, n for n--+ oo. Using the monotonicity of (d(Xn))nEl'I· we obtain 

ß(Xmk(n)+I) d(Xn) d(Xmk(n)+l) 
--~--> > . 
E(d(Xmk(n))) - E(d(Xmk(n))) - E(d(Xmk(n») 

(5.5) 

By (5.4) the left hand side of (5.5) tends to one alm06t surely for n--+ oo. For 
the quotient on the right hand side we receive almost surely for n-+ oo by (5.4) 
and (1.1) : 

(5.6) 
d(Xmk(n)+I) E(d(Xmlr(n)+l)) ( l )-#i ------ ...... 1+-- -1. 
E(d(Xm•<n») E(d(Xm1rcn») mt(nJ 

Hence, d(Xn) - E(d(Xm1r(n))) almost surely. Therefore, we get alm08t surely 
for n --+ oo and d ~ 2: 

(5.7) 

which completes the proof of Theorem 2. 

6. Generalisations and conduding remarb 

Aa menti'lned in tbe introduction, analogous results as in section 2 for the uni­
form distribution can be obtained for other distributions in Bd. Carnal [4] con­
sidered spherically symmetric distributions with regularly varying tail. 
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Let the polar decompositions of thc vectors a; , a; = p; s; , consist of indepen­
dent radial parts p; E [O , 1] and spherical parts s; E 5d- t . The radial distribution 
function F , cf. section 3, satisfy · 

(6.1) F(l - t)""' L(l/t)t",t - 0+, 

for a <T 2: 0 and an at infinity slowly varying function L . A function L is called 
slowly varying at infinity if lim LL1r)) = 1 for all p E (0, oo). lf <T = 0, we assume 

r-oo r 

moreover lim L( 1/t) = 0. The spherical parts s; be uniformly distributed on the 
1-0+ 

unit sphere 5d- l . Typical examples for slowly varying functions are constants , 
logarithms, iterated logarithms et cetera. Spherically symmetric distributions, 
which satisfy (6.1), are called distributions with u-re~larly varying tail in the 
followiog. For iDBtance, the uniform distributioo in B satisfies (6.1) with u = 1 
and the constant function L( 1/t) = d, cf. section 3. Carnal proved for d = 2 and 
F, which fulfill (6 .1): 

(6.2) E(Ll(Xn))"' L„(n) n-~ , n-+ oo, 

where La is a certain at infinity slowly varying function related to L. Müller 
(9] studied uniformly distributed random vectors a; on tbe sphere 5d-l and 
obtained for d 2: 2 

('6 .3) 

The uniform distribution on the sphere can be considered a limiting case of 
Carnal's dass taking a pointwise limit of <T-regularly varying tailed distributions 
with u-+ 0+ and appropriately chosen functions L . 

Theorem 3 generalizes Carnal's result (6.2) on the expectation of Ll(Xn) to 
distributions with u-regularly varying tail in Bd for d 2: 1. If G is the inverse 
function of G, cf. section 3, then: 

Theorem 3: For any spherically symmetric distribution in Bd, d 2: l, with 
u-regularly varying tail, there is a positive constant Cd,a nch that 

(6.4) E(Ll(Xn )) "'Cd,a(l - G( * )), n - 00. 

lt should be worth noticing that (6.4) relates the rate of decadence of E(Ll(Xn)) 
to the intrinsic probabilistic quantity G, which can be interpreted geometrically: 
Let H be the boundary hyperplane of an halfspace, wh~ intersection with the 
unit ball has probability content TE [O , 1/2] , then h = G( r) is the distance from 
H to the origin. lt is a disadvantage of the description (6.4) that the rate of 
E(Ll(Xn))'s decadence is not explicitly given. For this reason we remark that for 
any spherically symmetric distribution in Bd, d 2: 1, with u-regularly varying 
tail, there is a positive, at infinity slowly varying function Ld,a such that 

(6.5) 

Formula (6.5) is obtained inverting (3.6). The constant Cd,a in (6.4) can be given 
exactly. We have 
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(6 .6) C = K (• _ d- l 2 ) I'(d + ~). 
d ,u d d d+l+20' (d-1) 1 

Theorem 4; For any sphencally S!lmmetric distribution in ßd . d 2: l, with 
O'-rtgularly varying ta1/, 

(6 .7) - 4±l 
Var(L1(Xn)) = O((l - G(~))-,-), n-+ oo. 

Analogously to the special case of uniform distribution in Theorem 2, we bave 
a 0-1-law for tbe limiting distributions: 

Theorem 5: For an1 spherically symmetric distribution in Bd , d 2: 2, with 
O'-rtg•larly varying tail, almost everytvlaert laolds: 

(6.8) L1(Xn) - E(L1(Xn)), n-+ 00. 

For a proof of Theorem 3, the interested reader might take Dwyer's (5) proof 
for tbe expected number of Xn 's facets as a guide. Dwyer's article also provides 
asymptotic formulae for p and G in case of spberically symmetric distributions 
witb O'-regularly varying tail , from which Lemma B can be derived in this more 
general situation . Theorem 4 is completely proven in section 4 as the left band 
sides of the claims are valid for regularly tailed distributions also. lt is an easy 
exercise to modify the proof of Theorem 2 in section 5 for this more general 
situation . 

lt is possible to give upper bounds for L1( Xn )'s variance for other classes 
of spherically symmetric distributions. For instance, if F(l - t) - exp(-t-"), 
t -+ 0+, for a positive O', we can sbow tbat the expectation value and tbe variance 

. of L1( Xn) decade in n like a logaritbm. But, tbougb the quotient of variance and 
squared expectation tends to zero as well, we cannot argue along the line of 
section 5, as the decadence of the quotient is to slow. So, we conjecture that the 
limiting distribution of EUfx~)) does not fulfill a 0-1-law in this situation. 

As a final remark we mention that all theorems of the article remain valid if 
L1(Xn) is replaced by the difference ofthe surface area of s"- 1 and Xn 's surface 
area. 
Acknowledgement: The results of the present paper have been announced at 
Municb Second GaWIB Symposium 1993. 
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