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Summary. Let (a;);enw be a sequence of identically and independently dis-
tributed random vectors drawn from the d-dimensional unit ball B¢ and let
Xn := convhull(a;,...,a,) be the random polytope generated by ay,.... an.
Furthermore, let A(X,) := Vol(B%\ X,) be the deviation of the polytope’s vol-
ume from the volume of the ball. For uniformly distributed a; and d > 2, we
prove that the limiting distribution of E-(AB% for n — oo satisfies a 0-1-law.
Especially, we provide precise information about the asymptotic behaviour of
the variance of A(X,). We deliver analogous results for spherically symmetric
distributions in B? with regularly varying tail.

Keywords. Stochastic approximation, convex hull, variance, limiting distribu-
tion

1. Introduction

Let (a;)ien be a sequence of independently and identically distributed random
vectors drawn from the d-dimensional unit ball B¢, d > 1, and X,, n > d + 1,
be the polytope generated as convex hull of the vectors a,,...,a,. The main
subject of the paper will be the behaviour of the deviation of volume A(X,),
A(Xn) := Vol(B?\ X,,), for large n.

There is much known about the asymptotic behaviour of the expectation
value of A(X,) in case of uniformly distributed a;. One of the first results on
this topic is due to Rényi and Sulanke [11], who investigated the planary case
d = 2. Their result was generalized to arbitrary dimensions by Wieacker [15],
who obtained that

(1.1) E(A(Xp)) = Can™ BT 4+ O(n"37),n — oo,
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with a positive constant Cy depending on d. For an extensive survey upon related
results about the expectation of polytope variables and upon the history of their
development we refer to the articles of Buchta [3], Gruber [7], Schneider [12],
Weil and Wieacker [13] and especially to the work of Barany and Larman [1,2].

Little is known so far about higher moments of polytope variables in general.
For d = 2 Groeneboom (6] analyzed the limiting distribution of the X,’s vertex
process, which was generalized by Hueter [8] to arbitrary dimensions. Using
Efron’s identity Groeneboom's results about the vertex process of X, enable
estimates for the variance of A(X,,) in case of d = 2 and uniformly distributed
a; but not for d > 3 or more general distributions.

In the present paper we are going to estimate the variance of A(X,) asymp-
totically from above for uniformly distributed a; in B¢, d > 1. Furthermore, as
an interesting consequence of the analysis of expectation and variance, we will

show that the limiting distribution of E%";ﬁ‘n satisfies a O-1-law for d > 2,

which means A(X,) = E(A(Xn))(1 + o(1)) for n — oo almost surely. The
structure of the paper is the following. Section 2 contains the main results. In
section 3 we provide additional notation and auxiliary lemmata necessary for the
proofs in sections 4 and 5. Generalizations of the results in section 2 are added
in section 6. We state analogous results for spherically symmetric distributions
with regularly varying tail in the ball. All proofs of the paper are formulated
in a manner, which allows a generalization to spherically symmetric distriba-
tions with regularly varying tail without much further work. The restriction to
uniformly distributed a; in the main part of the paper has been done to make
reading easier for non-specialists and in order to keep necessary technicalities at
a minimum.

2. Main results

Our first result provides an asymptotic upper bound for the variance of A(X,)
in case of a uniformly distributed sample:

Theorem 1: For uniformly distributed a; in B4, d > 1:
d+43
(2.1) Var(A(X»)) = O(n~ &), n — oo.

The order of the asymptotic bound in (2.1) cannot be improved in general, as
it is an easy exercise to confirm for d = 1 that Var(A(X,)) = 6(n~?), n — oo.
It is also possible to establish Var(A(X,)) = 6(n~3%/3), n — oo, for d = 2. We
conjecture that (2.1) is sharp in order for d > 3 too, as it seems natural that
the variance tends to zero more slowly in higher dimensions. But, this question
remains still open. It is no surprise that Var(A(X,)) becomes small for large n,

but it is an interesting observation that the quotient !E;%AA((}‘?—:%)Z tends to zero also
as n tends to infinity for d > 2. In the light of Chebychev’s inequality this means
that even small relative deviations from the mean are very unlikely for large n.
But even more is true. Denoting f(t) ~ g(t), t — to, for f(t) = g(t)(1 + o(1)),
t — tg, we have:

Theorem 2: For uniformly distributed a; in B4, d > 2, almost cverywhere
holds:
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(2.2) A(Xn) ~ E(A(Xn)), n — 2.

In oth i imi al
er words, the random variables hnn_l.gf F(—A%TL)S Ilmsup E('ZS("X—T and 1 are

equal up to sets of measure zero. This means the Ilmltmg dlstnbutlon of E(_AA(‘(%‘)

satisfies a 0-1-law: If we consider a special, randomly generated sequence (a;)ieN
we know that with probability one A(X,) has the asymptotic behaviour we
expect if we average on all events (a,);en. For d > 2:

A(X) 0, s<
(2.3) Pr( lim ——n0 SRt {

Surprisingly, (2.3) is not true if d = 1. Here, the limiting distribution is given by

(2.4) Pr( lim %":—)) < s) =1~ (1+ 2s)exp(~2s).

3. Definitions and auxiliary lemmata

As the random variable A(X,) is not very handy for an asymptotic evaluation
of moments, in most papers, which deal with the expectation of A(X,), the
random variable Vol( X, ) is studied instead. For the analysis of variances we go
another way and approximate A(X,) by a related random variable, which has

the same asymptotic behaviour. Let X, := convhull(X, U {0}) and
(3.1) A(X,) := Vol((cone(Xn) \ Xn) N BY).

Then, A(X,.) is equal to A(X,) if and only if 0 € int(X,). If 0 & int(X,), we
have 1pq < A(Xn) — A(Xn) < pa, where pg := Vol(B?). Thus, for any k € IN
and any spherically symmetric distribution there exists a constant n € [%pd, K,
such that

(32)  E(A*(Xa) - A*(Xa)) = 1*Pr(0 ¢ int(X,)) = rr*?"‘“:);:; "7")-

The identity on the right hand side of (3. ‘2) which is independent from the choice
of the spherically symmetric distribution, is due to Schlaefli and was rediscovered
by Wendel [14]. Especially, (3.2) means that the moments of A(X,) and A(X,)
are equal up to terms of exponentially decreasing order in n. Hence, if E(A*(X,))
does not decrease exponentially in n, E(A*(X,)) ~ E(A*(X,)), n — oo, and
therefore, if Var(A(X,)) = O(n®) for an a € IR, we know Var(A(X,)) = O(n®)
for n — oo. It is the main a.dva.nt.age of investigating A instead of A that A can
be additively represented in terms of functionals of X,’s boundary simplices.
Before we explain this fact, we introduce some notation, which is basic for our
considerations in the following sections.

Let A, := {a1,...,a,}, n > d + 1, be nondegenerate. We call a set A,
nondegenerate, if any A,-subset of cardinality < d is linearly independent and
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any Ap-subset of cardinality < d + 1 is affinely independent. Geometrically,
nondegeneracy of A, means that every facet of X, is a simplex. In case of
spherically symmetric distributions with Pr(a = 0) = 0, A, is nondegenerate
with probability one. For any set I of indices 1,..., n with cardinality d let
Aq := {a;|i € I}, S; := convhull(A;) and S; := convhull(S; U {0}). H(A;) be
the hyperplane supporting S; and H'!)(A;) be the closed halfspace generated by
H(Ar), which contains the origin. For any A,-subset A; with cardinality d and
any Ap-subset B let y (B, Ay) := x(B C HY)(A})) be the indicator functional
deciding whether B belongs to H'!)(A;). Especially, if B = A,, x1(An, Ar)
indicates whether S; is a boundary simplex of X, or not. Finaliy, for d > 1, x4
denote the surface area of S4~!. For nondegenerate sets A, we have the following
representation of A(X,):

(3-3) A(Xn) =3 x1(An, A1)8(Ar) with §(Ar) := Vol((cone(Sr) \ 57) N BY).
I

In order to estimate the variance of A(X,) asymptotically we need a bound for
6(Ar), which is good if Sy lies near the boundary of B?, as X,, exhausts the ball
more and more if n becomes large with high probability. Let h(Ay) be H(Aj)’s
distance from the origin. Then:

Lemma A: If A; 1s a linearly independent set,
(3.4) §(Ar) = O((1 - M)y, 0 — 1-,

rlmiformly for all Ay with h(A;) = h’. Moreover, 5(A1) 1s globally bounded by
Hd-

Proof : By geometrical insight, we have in case of linearly independent A; with
h(Ay) = h':

_ h'd

= 1 - = 1-h
6(A1) S VOI(FSI) = VOI(S’) = W—d—_—l—Area(Sl).

As Sy is a simplex in a d — 1-dimensional ball with radius v/1 — h’2, a rough
bound for its area is given by Area(Sy) < pq—1(1 — h'2)(4=1)/2  Therefore, we
obtain

(A1) < 2T paca(1 = W) -4 = 0((1 - W) ) W — 1 -

The global bound is obvious by the definition of 5(Ar).

Besides the geometrical quantities introduced above, we need some proba-
bilistic quantities. Let F(h’) := Pr(||a||, > h’) be the probability that a random
point lies outside a sphere of radius h’ centered at the origin. For uniformly in
B¢ distributed vectors, F is given by F(h') = 1—h'® . G(K') := Pr(a() > k') be
the probability that a random point lies beyond a fixed hyperplane at distance
h’ from the origin and g(h’) be G(h’)’s density function. Another quantity often
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used in the following sections is the density function p(h’) of h(A;)'s distribu-
tion function P(h') := Pr(h(A;) < h’). Raynaud [10] proved that for uniformly
distributed a,:

(3.5) (h)_“d x/“ t)Tdt o(W) = ;KJH-X( h/))d <

Ka24o

For our asymptotic estimations we widely do not need explicit representations
of these quantities but some relations between them, which we summarize in the
following lemma:

Lemma B: [n case of uniformly distributed a; 1n B? there exist positive con-
stants a4, B4 and v4 such that ford > 2:

(3.6) G(K) ~ ag(l = K) T F(A'), b — 1—,
(3.7) p(h') ~ Ba G4 2(h')g(h")F ('), h' — 1—
(3.8) p(h') < vag(h'). K" €[0,1].

Ford =1, we have p(h') = 2g(h’) and P(h') = F(h') = 2G(h’) for h € [0.1].

Lemma B is an easily established consequence of (3.5) and therefore we do not
proof it. Mainly, we state the lemma because its claims remain valid, if we
consider more general spherically symmetric distributions. For instance, if the
underlying distribution has a regularly varying tail, cf. section 6 for a definition,
(3.6-3.8) hold with constants depending additionally on F then.

In order to evaluate the stochastic integrals representing the variance in
section 4 we need an asymptotic formula, which is based on Watson’s lemma:

Lemma C: Let R € C(0, §] fulfill R(t) ~ Lt for t — 0+ and constants L > 0
and B > —1. Then, ford > 1:

1/2

(3.9) (;) /(1 — )" 991 R(r)dr ~ ___F(dd—!}- A) R(%), n — oo.
0

Equation (3.9) is also valid if L will be replaced by an at zero slowly vary-
ing function, cf. section 6 for a precise definition. We will apply Lemma C to
functions R of type R(7) := 71(1 — G(7))?2, where 01,02 > 0 and G is the
inverse function of G. These functions fulfill the prepositions of Lemma C with
B=01+ o'gd‘%1 for uniformly distributed vectors in the ball, as is proven by in-
version of (3.6). The funtions R satisfy the prepositions also in the more general
case of spherically symmetric distribution with regularly varying tail in the ball.

Finally, we look at the distribution function P of an angle enclosed between
two independently and spherically symmetrically distributed pointsin B4, d > 2.
P has a density function p, given by Lemma D.

Lemma D: Let a; and a; be indcpcndenth distributed by a spherically sym-
metric distribution in BY d > 2, and let P(p) = Pr(L(ay,az) < @) be the
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distribution function of the angle enclosed by a, and a;. Then P has a density
p. given by

(3.10) p(y) = Bd-l Gipd-2 2.
Kd
Proof : Without loss of generality let a; = €; and a; be uniformly distributed

on the sphere S%~! In this case. we obviously have
P(p) = Pr({(a;.a) < p) = Pr(a} > cos p)

For the uniform distribution on the sphere S4-!, Pr(a;” > cos ) equals the

fraction of the area of the cap of S4=! cut off by the hyperplane a(!) = cos .
Thus,

"4

P(p) = Ki—;l/sind_zwdw.
0

Thus, (3.10) is immediate by taking derivatives.

4. The variance—Proof of Theorem 1

We consider the second moment of the polytope functional A, cf. (3.1), instead
of A’s, which was motivated in section 3. By (3.3) we know, that

(4.1) E(A%(X,)) = Z E(Pr(S;, Sy bd. simpls. of X,)8(A[)6(As)).
I.J

Let us first overestimate the probability that S; and S; are jointly boundary
simplices of X,,. If we introduce the probability function G, 1( Ay, As),

(4.2) G1.1(Ar, As) = Pr(a € HV(A[)n HY(A))),

we obtain by use of the definition of x1, cf. section 3,
(4.3)
Pr(Sr, Sy bd. simpls. of Xn) = G1,1(Ar, As)" 2410y (As, An)xa (A1, Ag),

as all a; are identically and independently distributed. (4.3) reduces the prob-
ability that S; and S, are jointly boundary simplices of X,, to the probability
G1.1(Ar, Ay) that a point a lies in both of the halfspaces H(1)(A) and H(V)(A;)
respectively. Hence, inserting (4.3) into (4.1) we obtain

(4.4)

E(A%(Xa)) = 3 EGT 7M™ Ar, An)xa(Ar Anxa(As, An) 8(AnS(A)).
1,J

Next, we split up the expectation on the right of (4.4) in two parts. We distin-
guish between those pairs of subsets A; and A, whose associated hyperplanes
H(A;) and H(A;) have common points inside the unit ball B?, and those,
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whose associated hyperplanes do not intersect inside the ball. Pairs (A;. Ay),
whose corresponding hyperplanes do not meet at all. form a set of measure zero.
So. we do not care about them. Let r(A;. AJ).

(4.5) r(Ar. Ay) = min{||a|l, [a € H(A;) N H(As)}.

be the distance from the origin to H(A;)NH(Ays). Then. r(A;, Ay) > 1if H(Ap)
and H(Ay) have no common points inside B¢ and r(A;. Ay) < 1 otherwise. We

define e(n),

(4.6)

e(n) ==Y B(GT ™A Ap)xa(Ar As)xa(As, A 6(ANS(AL) x(r > 1))
I.J

and the complement &(n) of e(n) by
(4.7

en) = S EGTT M4, Anxa (A, Ana(As, AD S(ADS(AS) x(r < 1),
8 4

where r = r(A;, Ay) in (4.6) and (4.7). As obviously holds,
(4.8) Var(A(X,)) = e(n) — E*(A(Xn)) + €(n).

Theorem 1 will be established by the proof of two claims, which estimate e(n)
and €(n) from above. For uniformly distributed vectors a; in the unit ball By,
d > 1, holds:

Claim 1: There exists a constant Cy such that for n > 2d:

(4.9) e(n) — E¥(A(Xa)) < Ca(l = G(2)*F* = O(n~ ).
Claim 2:
(4.10) &(n) = O((1 - G(1) ) = O(n~ BT), n — 0.

G denotes the inverse function of G, cf section 3. We notate (4.9) and (4.10) in
terms of G also as the left hand sides of the claims remain valid for spherically
symmetric distributions with regularly varying tail, cf. section 6. The order of
decadence of €(n) in line (4.10) cannot be improved. This is unfortunately not
necessarily true for the estimate in line (4.9), as e(n) — E3(A(X,)) might be
negative and could have the same order in modulus, which €(n) has. Thus, in
order to determine the sharp order of decadence of Var(A(Xy,)), we need a lower
bound, which we cannot give for d > 3 so far. Furthermore, from (4.9-4.10) we
learn, that E(A2(X,)) ~ e(n) ~ E2(A(X,)) for n — oo. This means the second
moment of A(X,) is dominated by the contribution of those pairs of boundary
simplices Sy and S;, whose supporting hyperplanes do not have common points
inside BY.

The proofs of both claims in the following subsections are done without
making use of the fact that we investigate uniformly distributed vectors. We
only assume that the functions G, p and g satisfy (3.6-3.8), that the functions
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of Eype R(T) = r"l(~1 - G('r))"2 fulfill the prepositions of Lemma C and that
E(A(X,)) = 6(1 - G(%)) for n — oo.

4.1 Proof of Claym 1

If r(A;, As) > 1, we know additionally that 1N J = @. As there are (7)(";9)
pairs of sets of indices (I, J), which do not intersect, we receive from definition
(4.6) for any pair (I,J):

(4.1.1)

e(n) = (3) ("7 Eo(GT1**(A1, A))x1(Ar, As)x1(As, Ar) 6(Ar)6(As) x(r > 1))

with r = r(A;, A;). The index 0 indicates that I and J fulfill |I N J| = 0. The
function G, (A, As) can be represented in terms of G, if jointly r(A;, As) > 1,
Ar c HY(Ay) and Ay ¢ HV(A;p).

H(AJ)

Fig. 1. [llustration of G1,1 (A7, Ay)

By geometrical insight, cf. Figure 1, we have under these conditions on A; and
Ay:

(4.1.2) G1.1(Ar, Ay) = 1 - G(h(Ar)) — G(h(AJ)).

Thus, if we insert (4.1.2) into (4.1.1) and if we afterwards estimate the indicator
functionals by one, we obtain an upper bound for e(n). It holds:

(413)  e(n) < (3)("79)Eo((1 - G(h(Ar)) = G(h(A;)))*~*46(A1)b(Ay))-

On the right hand side of (4.1.3), the variables h;, = h(Ar) and h, = h(Aj)
and the variables §( Ar) and 6(Ay) are independent, as I and J are disjoint sets.
Therefore, by Bayes’ theorem the right hand side of (4.1.3) is equal to

(4.1.4)

(3)(3) [ J(1 = G(hs) = Glba))"MEG(ADIA)EGE(AIb2)dP(hi )P (ho)
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with P(h') = Pr(h(A;) < k'), cf. section 3. The condition ( - |A’) is an abbrevia-
tion for the condition (-|h(Ax) = h'), K € {I,J}. As P has a density function
p, we are allowed to replace dP(h;) by p(h;)dh; in (4.1.4). For ease of notation
we introduce an auxihiary function A by the equation

(4.1.5) E(8(Ak)|h)p(h) = A(h)g(h)
and substitute G(h;) = 7; in (4.1.4). We obtain from (4.1.3):
1/21/2

(4.16)  e(n) < (3)("79 of of (1 = 7 — 12)"~24A(G(11)) A(G(2))drydrs,

where G denotes the inverse function of G. _
It is our next objective to compare e(n) with E2(A(X,)). For that reason we

derive a representation of E(A(X,)), which is similar to e(n)’s bound in (4.1.6).
By definition (3.3) and the identical distribution of the vectors a; we have for
any set of indices I:

(4.1.7) E(A(X,)) = () E(Pr(Sy bd. simpl. of Xn)8(Ar)).

The probability that Sy is a boundary simplex of X, can be expressed in terms
of G. We gain by the definition of x, cf. section 3:

(4.1.8) Pr(Sy bd. simpl. of X,,) = Pr*~%(a € H")(A[)) = (1 — G(h(Ar)))"~%.

Thus, with the same arguments as above we receive
= 1/2 § o
(4.1.9) E(A(Xa)) = (3) [ (1-7)""9A(G(r))dr.
0

We reduce the discussion of the difference e(n) — E2(A(X,)) to the analysis of
a bilinear form. If we define kernels K(")(ry, 1),

(l -N - Tz)"—zd

(4.1.10) K™)(r, 1) := (A=r)" 91 -4 L
for 7 € [0, ] and functions An,
— r)n—d ~

(4.1.11) An(7) := . (1= 7)""9A(G(7)) ’

[ (1 = =4 A(G(r"))dr’

0
for 7 € [0, }], we obtain from (4.1.6) and (4.1.9),

g 1/21/2

(4.1.12) e(n)E;(g((XAn()})(n)) < j K(n)(leTZ)An(Tl)An(T2)4T1dT2|

(V]
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alg

0
- K{M>0,K(3)>0 K{M<o,K(M>0

gative domain of K (™)
K™) K K(®) K(®) D Degative
- n 20 3 <0 D ': £0,K7,"<0

Fig. 2.1. Monotonicity of K(™) Fig. 2.2. Partition of the domain of K(™)

as (3)("79) < (:)2. The only matter left is a careful estimation of the bilinear-
form on the right hand side of (4.1.12), which we do for n > 4d. We dissect the
domain of integration [0, %]2 into four parts @, ..., Q4, cf. Figure 2.2. It is not

very hard to show that K(")(i—", %) < 0. Hence, by the monotonicity of K(™)

cf. Figure 2.1, we know K™)(1, 15) < 0 for (1, 72) € Q4. In the region Q, we
have

(4.1.13) K™M(r,m)<(1-n)"9-1<d2%'n, (n,m) € Qq,

arguing again with the monotonicity of K("). The same estimate holds in Q3, if
we replace 7 by 7, on the right hand side of (4.1.13). Finally, we have to analyze
K™ in Q,. As K™ has a local maximum in (£, 4), cf. Figure 2.1, we obtain:

(4.1.14) K™(r;,m) < max(K(™)(0,24) K(")(4, 4)) < £94+2 (1 ) € Q1.

Summarizing the discussion of the kernel function K(™), we receive from (4.1.12):

1/2
= 2
< doit? / TAn(7)dr + ‘%2“2.
0

e(n) — E*(A(Xa,))
E?(A(X,))

(4.1.15)

Let us look at the integral on the right hand side of (4.1.15). Invoking the
definition of A, and formula (4.1.9), we get:

2 @) lofz(l = )4 A(G(r))dr
(4.1.16) of TAn(7)dT = E(A(X.))

By the aid of (3.7) and A’s definition (4.1.5), we know for d > 2 that
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(4.1.17) A(h) ~ B4G4=2(h)E(8(A[)|h)F(h), h — 1 — .

For d = 1, A(h) = 2E(3(A;)|h). By Lemma A, E(3(A;)|h) = O((1 — h)“F") for
h — 1—. Therefore, by (3.6) and (4.1.17) we get A(h) = O((1 — h)G*(h)). Thus,
as p/g i1s bounded, there exists a continous function R and a positive constant
L such that

(4.1.18)  A(G(r)) <t 'R(r), T€[0,1], R(r) ~ LT(1 - G(1)), 7 — 0 +.

As R satisfies the prepositions of Lemma C,

1/2 =
(4.1.19) (3) of (1= 1)t A(G(r))dr = O(R(L)) = B(L(1 - G(1))), n — 0.
As
(4.1.20) E(A(Xa)) =6(1 - G(L)), n — oo.
Hence, by (4.1.16),

12
(4.1.21) J TAn(7)dr = O(n~!), n — oo.
0

The proof of Claim 1 is completed if we invoke (4.1.20) for the denominator on
the left hand side of (4.1.16).

4.2 Proof of Claim 2

The purpose of the present subsection is an estimation of the sequence &(n) from
above. We analyze the contribution of pairs of indices (I,J) with |[I N J| = k,
k € {0,...,d}, seperately. Using easy combinatorial arguments, we see that there
are g,

(4.2.1) o= (gdn_ k) (2:—_:) (:)

pairs of sets of indices I and J, which both have cardinality d and which have
exactly k elements in common. Hence, if we define
(4.2.2)

ee(n) = Ee(GT 12 (A1, As) xa (A1, As)xi(As, AD) §(ADS(A) x(r < 1))

with r = r(A;, A;) and where the index k indicates that |I N J| = k, we get
from (4.7):

d
(4.2.3) é(n) =Y _e(n).

k=0

In the sequel, we estimate €;(n) from above. First, we give a bound for
Gly}(A[,AJ) in terms of G. For all (A[,AJ),
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(4.2.4) G11(Ar, Ay) < min{l — G(h(Af)), 1 - G(h(A)))},

which is immediate by the definitions G and G, ;. We introduce the conditioned
probability function Py,

(4.2.5) Pi(hy,hs) := Pry(h(A;) < hy, h(AJ) < ha),

and the conditioned expectation
(4.2.6)

ex(hy, h) := Ex(8(Ar)8(As) X(r(Ar, As) < 1) [h(Ar) = hy, h(As) = hy),
where in both formulae the index k indicates that |/ N J| = k. The condition
(-|h1, h2) abbreviates the joint conditions h(A;) = h; and h(A;) = hy on Ay

and Aj. If we estimate the indicator functionals x,(Ay, Ay) and x;(As, Af) in

(4.2.2) by one, we receive by Bayes’ theorem and (4.2.4):
(4.2.7)

a(n) < o / (1 — G(min{hy, h2}))" =2 ey (hy, ha)d{ Py (hy, h2)}.
0<hy ha<1
For d{Pg(hl,hg)} holds
(428)  d{Pu(h1,he)} = d{Pra(h(As) < halh(Ar) = hy)}p(h1)dhy

with p as in section 3. Thus, exploiting the symmetry of (4.2.7) we obtain

1
(4.2.9) #u(n) < 2 / (1 = G(hy)™ 24K T, (hy)p(hy )dh,
0

where the auxiliary function T} is defined by

3

(4.2.10) Te(hy) = /Ck(hl,hz)d{Pl‘k(h(AJ) < ha|h(Af) = b))}
hy

By Lemma A, we know that
(4.2.11)

ex(hy, ha) = O((1 = k) F* (1 = ho) 4 )Pri(r(Ar, Ay) < 1|hy, ha), hy,hy — 1 —.

Hence, if we insert (4.2.11) into (4.2.10) we obtain an asymptotic bound for T}:
(4.2.12)

Ti(h1) = O((1=h1)**")Pre(h(As) > by, r(Ar, As) < 1|h(Af) = hy), by — 1.

For k # d the conditioned probability on the right hand side of (4.2.12) can be
estimated by use of geometrical observations, cf. Figure 3. If h(A;) > h, and
hy = h(Ay), each vector a € A; \ A; must lie outside a ball of radius h; centered
at the origin. On the other hand, as r(Af, As) < 1, the angle enclosed between
the normal vector w(Ay) of the hyperplane H(A;) and each vector a € A \ Af
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6 := 3arccos h(Ay)

Fig. 3. Maximal possible angle between w(A;) and a vectora € Ay \ Ay

cannot exceed 3 arccos h;. Thus, as w(A;) and each a € A;\ A are stochastically
independent, we get

(4.2.13)
Pri(h(As) > hy, r(Ar, As) < 1|h(A;) = hy) < (F(hy)P(3arccos hy)) ¥,

which is trivially valid in case of d = k also. From Lemma D one easily derives

that P(3arccosh;) = O((1 — hl)ii_l) for hy — 1—. Thus, invoking (3.6) we
obtain from (4.2.13) and (4.2.12):

(4.2.14) Ti(h1) = O((1 — h))*H'G(hy)* %), by = 1 —.
For simplicity of notation we introduce a function S; by the equation

(4.2.15) Sk(h1)g(h1) = Te(h1)p(h1)
As p fulfills (3.7) we obtain

(4.2.16) Se(hy) = O(G Y (h)(1 = b)) F), by — 1 —.
Hence, as p/g is bounded there exists a continous function R; and a positive

constant L, such that
(4.2.17)

Se(G(r)) < T4-E1Ry(7), T € 0, 1], Ra(r) ~ L(1 = G(r))F*, 1 = 0 +.

If we substitute G(h;) = 7 in line (4.2.9) and use (4.2.15) and (4.2.17), we receive

1/2
(4.2.18) e(n) < 20350 () Gata) { (1 — r)n-2d+kr2d-k=1 Ry (r)dr.

As R, satisfies the prepositions of Lemma C, we obtain the desired estimate of
Claim 2.
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5. The limiting distribution—Proof of Theorem 2

If we apply Chebychev’s inequality to the random variable A(X,) — E(A(Xn)).
we obtain forn > d+ 1 and a > 0

. . _, Var(A(X,))
9.) Pr(|A(X,) — E(A(X,))| > aE Xn < sl i)
(5-1) 1(|JA(Xn) — E(A(X,))| > aE(A(XR))) € @ E2(A(X,))
By (1.1) and Theorem 1, we know that for uniformly distributed a;:
Var(A(X,)) _ds=d
5.2 n = —_——t 23y — 00.
( ) ” E2(A(Xn)) O(n +1 )l n oo
Hence, the subsequence nm, , mg := (k +d)*, is summable for d > 2. This means
(5.3) Y Pr(|A(Xm,) - E(A(Xm, )| > aB(A(Xpm,))) < 00
k=1

for all @ > 0. Thus, by the lemma of Borel-Cantelli, we receive almost surely for
d> 2

(5.4) A(Xmy) ~ E(A(Xmy)), k — oo.

In the sequel, we exploit the monotonicity of the sequence (A( Xy ))nen in order
to show (5.4) for the sequence itself. For every n > m, there exists an index k(n)
such that my,) < n < Mmg(n)41. By the definition of my, it is a simple matter to
prove mg(,) ~ n for n — oo. Using the monotonicity of (A(Xn))nen, We obtain

AlXmyps) o AXn)  Ama)
E(A(ka(“))) - E(A(ka(n))) - E(A(Xmg(n)))
By (5.4) the left hand side of (5.5) tends to one almost surely for n — oo. For

the quotient on the right hand side we receive almost surely for n — oo by (5.4)
and (1.1):

(5.5)

~ 1.

A( Xy mya1) ~E(A(x%)+,))~(l 1 )#—
E(A(Xmg(n))) E(A(ka(,,)))

Hence, A(X,) ~ E(A(X,,,k(n))) almost surely. Therefore, we get almost surely
for n — oo and d > 2:

A(Xn) . E(A(ka(,,))) . (mk("))-ﬁ—,
E(A(Xa)) E(A(Xn)) n

which completes the proof of Theorem 2.

(5.6)

M(n)

(5.7) ol

6. Generalizations and concluding remarks

As mentioned in the introduction, analogous results as in section 2 for the uni-
form distribution can be obtained for other distributions in B4. Carnal [4] con-
sidered spherically symmetric distributions with regularly varying tail.
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Let the polar decompositions of the vectors a;, a; = pi i, consist of indepen-
dent radial parts p; € [0, 1] and spherical parts s; € S?~!. The radial distribution
function F', cf. section 3, satisfy

(6.1) F(1=t)~ L(1/t)t°,t — 0+,

for a ¢ > 0 and an at infinity slowly varying function L. A function L is called
slowly varying at infinity if lim %%‘%2 = 1forall p € (0,00). If ¢ = 0, we assume

I —+00

moreover 'lirgl*_ L(1/t) = 0. The spherical parts s; be uniformly distributed on the

unit sphere S9~!. Typical examples for slowly varying functions are constants,
logarithms, iterated logarithms et cetera. Spherically symmetric distributions,
which satisfy (6.1), are called distributions with o-regularly varying tail in the
following. For instance, the uniform distribution in B¢ satisfies (6.1) with o = 1
and the constant function L(1/t) = d, cf. section 3. Carnal proved for d = 2 and
F, which fulfill (6.1):

(6.2) E(A(Xn)) ~ Lo(n)n" %, n — o0,

where L, is a certain at infinity slowly varying function related to L. Miiller
(9] studied uniformly distributed random vectors a; on the sphere S¢~! and
obtained for d > 2

(6.3) E(A(X,)) ~ Can~ 3T, n'— oo.

The uniform distribution on the sphere can be considered a limiting case of
Carnal’s class taking a pointwise limit of o-regularly varying tailed distributions
with ¢ — 0+ and appropriately chosen functions L.

Theorem 3 generalizes Carnal’s result (6.2) on the expectation of A(Xp) to
distributions with o-regularly varying tail in B4 for d > 1. If G is the inverse
function of G, cf. section 3, then:

Theorem 3: For any spherically symmetric distribution in B, d > 1, with
o-regularly varying tail, there is a positive constant Cq, such that

(6.4) E(A(Xa)) ~ Cao(1 - G()), n — oo.

It should be worth noticing that (6.4) relates the rate of decadence of E(A(X,))
to the intrinsic probabilistic quantity G, which can be interpreted geometrically:
Let H be the boundary hyperplane of an halfspace, whose intersection with the
unit ball has probability content 7 € [0, 1/2], then h = G() is the distance from
H to the origin. It is a disadvantage of the description (6.4) that the rate of
E(A(Xn))’s decadence is not explicitly given. For this reason we remark that for
any spherically symmetric distribution in B4, d > 1, with o-regularly varying
tail, there is a positive, at infinity slowly varying function L4, such that

(6.5) 1= G(L) ~ Lay(n)n~ 7195 n — co.

Formula (6.5) is obtained inverting (3.6). The constant Cy4 , in (6.4) can be given
exactly. We have
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_ rd+ —t—
(6‘6) Cd,o = K4 (1 _ d 1 2 ) ( d—l+20)

d d+1+20 (d-1)!

Theorem 4: For any spherically symmetric distribution sn B%, d > 1, with
o-reqularly varying tasl,

(6.7) Var(A(X,)) :0((1—C(£))#‘3). n — oo.

Analogously to the special case of uniform distribution in Theorem 2, we have
a 0-1-law for the limiting distributions:

Theorem 5: For any spherically symmetric distribution in B4, d > 2, with
o-regularly varying tail, almost everywhere holds:

(6.8) A(X,) ~ E(A(Xp)), n — .

For a proof of Theorem 3, the interested reader might take Dwyer’s [5] proof
for the expected number of X,’s facets as a guide. Dwyer’s article also provides
asymptotic formulae for p and G in case of spherically symmetric distributions
with o-regularly varying tail, from which Lemma B can be derived in this more
general situation. Theorem 4 is completely proven in section 4 as the left hand
sides of the claims are valid for regularly tailed distributions also. It is an easy
exercise to modify the proof of Theorem 2 in section 5 for this more general
situation.

It is possible to give upper bounds for A(X,)’s variance for other classes
of spherically symmetric distributions. For instance, if F(1 —t) ~ exp(—t~7),
t — 0+, for a positive o, we can show that the expectation value and the variance
of A(X,) decade in n like a logarithm. But, though the quotient of variance and
squared expectation tends to zero as well, we cannot argue along the line of
section 5, as the decadence of the quotient is to slow. So, we conjecture that the

limiting distribution of g5l does not fulfill a 0-1-law in this situation.

As a final remark we ment'i.on that all theorems of the article remain valid if
A(X,) is replaced by the difference of the surface area of S4~! and X, ’s surface
area.
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